Linear maps and matrices

This file defines the maps to send matrices to a linear map, and to send linear maps between modules with a finite bases to matrices. This defines a linear equivalence between linear maps between finite-dimensional vector spaces and matrices indexed by the respective bases.

Some results are proved about the linear map corresponding to a diagonal matrix (range, ker and rank).

Main definitions

to_lin, to_matrix, lin_equiv_matrix

Tags

linear_map, matrix, linear_equiv, diagonal


matrix.eval

Evaluation of matrices gives a linear map from matrix m n R to linear maps (n → R) →ₗ[R] (m → R).

matrix.to_lin

Evaluation of matrices gives a map from matrix m n R to linear maps (n → R) →ₗ[R] (m → R).

linear_map.to_matrixₗ

The linear map from linear maps (n → R) →ₗ[R] (m → R) to matrix m n R.

linear_map.to_matrix

The map from linear maps (n → R) →ₗ[R] (m → R) to matrix m n R.

to_matrix_to_lin

to_lin is the left inverse of to_matrix.

to_lin_to_matrix

to_lin is the right inverse of to_matrix.

lin_equiv_matrix'

Linear maps (n → R) →ₗ[R] (m → R) are linearly equivalent to matrix m n R.

lin_equiv_matrix

Given a basis of two modules M₁ and M₂ over a commutative ring R, we get a linear equivalence between linear maps M₁ →ₗ M₂ and matrices over R indexed by the bases.