ultrafilter_basis

Basis for the topology on ultrafilter α.

ultrafilter_is_open_basic

The basic open sets for the topology on ultrafilters are open.

ultrafilter_is_closed_basic

The basic open sets for the topology on ultrafilters are also closed.

ultrafilter_converges_iff

Every ultrafilter u on ultrafilter α converges to a unique point of ultrafilter α, namely mjoin u.

dense_inducing_pure

pure : α ultrafilter α defines a dense inducing of α in ultrafilter α.

dense_embedding_pure

pure : α ultrafilter α defines a dense embedding of α in ultrafilter α.

ultrafilter.extend

The extension of a function α γ to a function ultrafilter α γ. When γ is a compact Hausdorff space it will be continuous.

ultrafilter_extend_eq_iff

The value of ultrafilter.extend f on an ultrafilter b is the unique limit of the ultrafilter b.map f in γ.

stone_cech

The Stone-Čech compactification of a topological space.

stone_cech_unit

The natural map from α to its Stone-Čech compactification.

stone_cech_unit_dense

The image of stone_cech_unit is dense. (But stone_cech_unit need not be an embedding, for example if α is not Hausdorff.)

stone_cech_extend

The extension of a continuous function from α to a compact Hausdorff space γ to the Stone-Čech compactification of α.